Совокупность низкомолекулярных соединений (углеводы, аминокислоты, органические кислоты, нуклеотиды и другие органические молекулы) в организме называют метаболомом. Определение состава метаболома важно для динамического анализа процессов, происходящих в организме. При нормальных условиях содержание соединений варьируется в некоторых пределах. При развитии заболевания метаболом пораженной ткани может резко измениться, и экстремальные (низкие или высокие) концентрации веществ могут стать биомаркерами процессов. Десятки биомаркеров уже нашли широкое применение в клинической практике: определение уровня креатинина в крови и моче используют для оценки функции почек, анализ на содержание желчных кислот в крови — функции печени. Междисциплинарная научная область, возникшая на стыке молекулярной биологии, биохимии и медицины — метаболомика, изучает качественный и количественный состав метаболома клетки, ткани или организма и его изменения во времени. Помимо обнаружения заболеваний, метаболомика помогает в поиске новых лекарственных средств, в микробиологии, пищевой химии, а также мониторинге состояния окружающей среды.
В метаболомике до сих пор нет единой процедуры анализа данных. Дело в том, что экспериментальные данные могут быть получены из десятков серий измерений биологических образцов в разных условиях. Для анализа таких данных используют различные статистические методы, которые позволяют подтвердить или опровергнуть гипотезы. В зависимости от принятых в конкретной лаборатории приемов и имеющегося опыта, статистический анализ проводят самыми разнообразными способами, долго выбирая условия и методы. Сотрудники химического факультета МГУ предложили универсальную рабочую схему анализа метаболома, скомбинировав существующие статистические методики. Ученые собрали несколько десятков наборов экспериментальных данных из открытых репозиториев. Экспериментальные данные (анализы 8 добровольцев, 20 пациентов с колоректальным раком до операции и 12 пациентов после операции), предоставленных из НМИЦ колопроктологии имени А.Н. Рыжих, ученые использовали для первичной оптимизации схемы анализа данных.
Источник: сайт МГУ.